Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(7): e29055, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38576565

RESUMO

Background: Anaplastic thyroid cancer (ATC), a rare and aggressive malignancy with a poor prognosis, has shown promise with the approved dabrafenib/trametinib combination for BRAFV600E mutation. Co-occurring PI3KCA mutations, identified as negative prognostic factors in lung cancer with BRAFV600E mutation, emphasize the need to target both pathways. Exploring trametinib and alpelisib combination becomes crucial for ATC. Methods: A patient-derived xenograft (PDX) and primary cell line were obtained from an ATC patient with BRAF and PI3KCA co-mutation. Individual testing of targeted therapies against BRAF, MEK, and PI3KCA was followed by a combination treatment. Synergistic effects were evaluated using the combination index. Immunoblotting assessed the efficacy, with validation performed using a PDX model. Results: In this study, the ATC0802 cell line and PDX were established from a refractory ATC patient. NGS revealed BRAF and PI3KCA co-mutations pre- and post-dabrafenib/trametinib treatment. Trametinib/alpelisib combination showed synergy, suppressing both pERK and pAKT levels, unlike monotherapies or BRAF knockdown. The combination induced apoptosis and, in the PDX model, demonstrated superior tumor growth inhibition compared to monotherapies. Conclusions: The combination of trametinib and alpelisib showed promise as a strategy for treating ATC with co-mutations in BRAF and PI3KCA, both in vitro and in vivo. This combination offers insights into overcoming resistance to BRAF-targeted treatments in ATC with mutations in BRAF and PI3KCA.

2.
Cancer Gene Ther ; 31(2): 322-333, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38057358

RESUMO

Intrahepatic cholangiocarcinoma (iCCA) is a subtype of CCA and has a high mortality rate and a relatively poor prognosis. However, studies focusing on increased cell motility and loss of epithelial integrity during iCCA progression remain relatively scarce. We collected seven fresh tumor samples from four patients to perform RNA sequencing (RNA-seq) and assay for transposase-accessible chromatin using sequencing (ATAC-seq) to determine the transcriptome profile and chromatin accessibility of iCCA. The increased expression of cell cycle regulators, including PLK1 and its substrate MISP, was identified. Ninety-one iCCA patients were used to validate the clinical significance of PLK1 and MISP. The upregulation of PLK1 and MISP was determined in iCCA tissues. Increased expression of PLK1 and MISP was significantly correlated with tumor number, N stage, and lymphatic invasion in an iCCA cohort. Knockdown of PLK1 or MISP reduced trans-lymphatic endothelial migration and wound healing and affected focal adhesions in vitro. In cell‒cell junctions, MISP localized to adherens junctions and suppressed E-cadherin dimerization. PLK1 disrupted adherens junctions in a myosin-dependent manner. Furthermore, PLK1 and MISP promoted cell proliferation in vitro and tumorigenesis in vivo. In iCCA, PLK1 and MISP promote aggressiveness by increasing lymphatic invasion, tumor growth, and motility through the repression of E-cadherin adherens junctions.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Junções Aderentes/genética , Junções Aderentes/metabolismo , Junções Aderentes/patologia , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares Intra-Hepáticos/metabolismo , Caderinas/genética , Caderinas/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo
5.
Eur J Cancer ; 195: 113286, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37968194

RESUMO

To the editor: Hand-foot skin reaction (HFSR), characterized by skin abnormalities on palmoplantar surfaces, has an overall incidence of about 35% upon vascular endothelial growth factor receptor-tyrosine kinase inhibitors (VEGFR-TKIs) treatment.1 Zinc, which plays a role in maintaining skin health, may be implicated in the pathogenesis of HFSR.2 Zinc deficiency has been shown to associate with dermatological toxicities of epidermal growth factor receptor (EGFR)-TKI.3, 4 Regorafenib, an oral multi-kinase inhibitor targeting VEGFR 1-3, PDGFR, cKIT, BRAF, and RET1, is approved for the treatment of metastatic colorectal cancer (mCRC) but commonly causes HFSR.5 This phase II randomized trial aimed to investigate whether zinc supplementation can reduce the severity of HFSR induced by regorafenib within the first 8 weeks of treatment (NCT03898102).


Assuntos
Fator A de Crescimento do Endotélio Vascular , Zinco , Humanos , Incidência , Compostos de Fenilureia/efeitos adversos , Inibidores de Proteínas Quinases/efeitos adversos , Suplementos Nutricionais
6.
Biomed Pharmacother ; 166: 115389, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37659202

RESUMO

Patients with advanced biliary tract cancer (BTC) have a poor prognosis, and novel treatments are needed. Gemcitabine, the standard of care for BTC, induces DNA damage; however, the ability of cancer cells to repair DNA dampens its effects. To improve the efficacy of gemcitabine, we combined it with MK1775, a Wee1 inhibitor that prevents activation of the G2/M checkpoint. BTC cell lines were treated with gemcitabine only or in combination with MK1775 to determine the therapeutic potential of BTC. Gemcitabine inhibited the growth and induced the apoptosis of four BTC cell lines to a greater extent when added with MK1775 than when added alone. The effects of the combination treatment were observed in both p53 wild-type and p53 mutant cell lines and were unaffected by knockdown of wild-type p53. The combination treatment increased the percentage of apoptotic cells and decreased the percentage of cells synthesizing DNA, suggesting that it caused DNA-damaged cells to accumulate and possibly die in S phase. It did not induce apoptosis when cells were arrested in mitosis using nocodazole. In a xenograft mouse model, gemcitabine plus MK1775 (but not either alone) inhibited the growth of tumors generated from inoculated BTC cells. Our results show that MK1775 highly enhances gemcitabine cytotoxicity in BTC regardless of p53 status. We suggest that the combination treatment elicits a DNA damage response and consequent apoptosis. Our preclinical study provides a basis for future clinical trials of gemcitabine plus MK1775 in patients with BTC.


Assuntos
Neoplasias do Sistema Biliar , Gencitabina , Animais , Humanos , Camundongos , Apoptose , Neoplasias do Sistema Biliar/tratamento farmacológico , Modelos Animais de Doenças , Proteína Supressora de Tumor p53/genética
7.
Ageing Res Rev ; 91: 102078, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37758006

RESUMO

Poly (ADP-ribose) polymerase 1 (PARP1) is a first responder that recognizes DNA damage and facilitates its repair. Neurodegenerative diseases, characterized by progressive neuron loss driven by various risk factors, including DNA damage, have increasingly shed light on the pivotal involvement of PARP1. During the early phases of neurodegenerative diseases, PARP1 experiences controlled activation to swiftly address mild DNA damage, thereby contributing to maintain brain homeostasis. However, in late stages, exacerbated PARP1 activation precipitated by severe DNA damage exacerbates the disease condition. Consequently, inhibition of PARP1 overactivation emerges as a promising therapeutic approach for neurodegenerative diseases. In this review, we comprehensively synthesize and explore the multifaceted role of PARP1 in neurodegenerative diseases, with a particular emphasis on its over-activation in the aggregation of misfolded proteins, dysfunction of the autophagy-lysosome pathway, mitochondrial dysfunction, neuroinflammation, and blood-brain barrier (BBB) injury. Additionally, we encapsulate the therapeutic applications and limitations intrinsic of PARP1 inhibitors, mainly including limited specificity, intricate pathway dynamics, constrained clinical translation, and the heterogeneity of patient cohorts. We also explore and discuss the potential synergistic implementation of these inhibitors alongside other agents targeting DNA damage cascades within neurodegenerative diseases. Simultaneously, we propose several recommendations for the utilization of PARP1 inhibitors within the realm of neurodegenerative disorders, encompassing factors like the disease-specific roles of PARP1, combinatorial therapeutic strategies, and personalized medical interventions. Lastly, the encompassing review presents a forward-looking perspective along with strategic recommendations that could guide future research endeavors in this field.


Assuntos
Doenças Neurodegenerativas , Ribose , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Poli(ADP-Ribose) Polimerase-1/metabolismo , Dano ao DNA , Reparo do DNA
8.
J Immunol ; 211(6): 964-980, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37578390

RESUMO

Teleost B cells are primitive lymphocytes with both innate and adaptive immune functions. However, the heterogeneity and differentiation trajectory of teleost B cells remain largely unknown. In this study, the landscape of grass carp IgM+ (gcIgM+) B cells was revealed by single-cell RNA sequencing. The results showed that gcIgM+ B cells mainly comprise six populations: (im)mature B cells, innate B cells, proliferating B cells, plasma cells, CD22+ cells, and CD34+ cells, among which innate B cells and proliferating B cells were uncommon B cell subsets with, to our knowledge, new characteristics. Remarkably, three functional IgMs were discovered in grass carp, and a significant percentage of gcIgM+ B cells, especially plasma cells, expressed multiple Igµ genes (Igµ1, Igµ2, and/or Igµ3). More importantly, through single-cell sorting combined with Sanger sequencing, we found that distinct VHDJH recombination patterns of Igµ genes were present in single IgM+ B cells, indicating that individual teleost B cells might produce multiple Abs by coexpressing rearranged IgM subclass genes. Moreover, the percentage of IgM1highIgM2highIgM3high plasma cells increased significantly after bacterial infection, suggesting that individual plasma cells might tend to produce multiple IgMs to resist the infection in teleost fish. In summary, to our knowledge, this study not only helps to uncover the unique heterogeneity of B cells in early vertebrates but also provided significant new evidence supporting the recently proposed "one cell-multiple Abs" paradigm, challenging the classical rule of "one cell-one Ab."


Assuntos
Infecções Bacterianas , Carpas , Doenças dos Peixes , Animais , Imunidade Inata/genética , Proteínas de Peixes/genética , Imunoglobulina M , Homeostase
9.
Int J Biol Sci ; 19(9): 2772-2786, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324940

RESUMO

Cholangiocarcinoma (CCA) exhibits aggressive biological behavior and a poor prognosis. Gemcitabine (GEM)-based chemotherapy is the first-line chemotherapy for advanced CCA but has a response rate of only 20-30%. Therefore, investigating treatments to overcome GEM resistance in advanced CCA is crucial. Among mucin (MUC) family members, MUC4 showed the greatest increase in the resistant versus parental sublines. MUC4 was upregulated in whole-cell lysates and conditioned media from gemcitabine-resistant (GR) CCA sublines. MUC4 mediated GEM resistance by activating AKT signaling in GR CCA cells. The MUC4-AKT axis induced BAX S184 phosphorylation to inhibit apoptosis and downregulated GEM transporter human equilibrative nucleoside transporter 1 (hENT1) expression. The combination of AKT inhibitors and GEM or afatinib overcame GEM resistance in CCA. In vivo, capivasertib (an AKT inhibitor) increased GEM sensitivity in GR cells. MUC4 promoted EGFR and HER2 activation to mediate GEM resistance. Finally, MUC4 expression in patient plasma correlated with MUC4 expression. Paraffin-embedded specimens from non-responders expressed significantly more MUC4 than did those from responders, and this upregulation was associated with poor progression-free survival and overall survival. In GR CCA, high MUC4 expression promotes sustained EGFR/HER2 signaling and AKT activation. The combination of AKT inhibitors with GEM or afatinib might overcome GEM resistance.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Neoplasias Pancreáticas , Humanos , Afatinib/uso terapêutico , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/metabolismo , Linhagem Celular Tumoral , Colangiocarcinoma/metabolismo , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB , Gencitabina , Mucina-4/genética , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas c-akt
10.
Phytomedicine ; 117: 154916, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37327643

RESUMO

BACKGROUND: With population aging, the incidence of aging-related Alzheimer's disease (AD) is increasing, accompanied by decreased autophagy activity. At present, Caenorhabditis elegans (C. elegans) is widely employed to evaluate autophagy and in research on aging and aging-related diseases in vivo. To discover autophagy activators from natural medicines and investigate their therapeutic potential in antiaging and anti-AD effects, multiple C. elegans models related to autophagy, aging, and AD were used. METHOD: In this study, we employed the DA2123 and BC12921 strains to discover potential autophagy inducers using a self-established natural medicine library. The antiaging effect was evaluated by determining the lifespan, motor ability, pumping rate, lipofuscin accumulation of worms, and resistance ability of worms under various stresses. In addition, the anti-AD effect was examined by detecting the paralysis rate, food-sensing behavior, and amyloid-ß and Tau pathology in C. elegans. Moreover, RNAi technology was used to knock down the genes related to autophagy induction. RESULTS: We discovered that Piper wallichii extract (PE) and the petroleum ether fraction (PPF) activated autophagy in C. elegans, as evidenced by increased GFP-tagged LGG-1 foci and decreased GFP-p62 expression. In addition, PPF extended the lifespan and enhanced the healthspan of worms by increasing body bends and pumping rates, decreasing lipofuscin accumulation, and increasing resistance to oxidative, heat, and pathogenic stress. Moreover, PPF exhibited an anti-AD effect by decreasing the paralysis rate, improving the pumping rate and slowing rate, and alleviating Aß and Tau pathology in AD worms. However, the feeding of RNAi bacteria targeting unc-51, bec-1, lgg-1, and vps-34 abolished the antiaging and anti-AD effects of PPF. CONCLUSION: Piper wallichii may be a promising drug for antiaging and anti-AD. More future studies are also needed to identify autophagy inducers in Piper wallichii and clarify their molecular mechanisms.


Assuntos
Doença de Alzheimer , Proteínas de Caenorhabditis elegans , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Lipofuscina/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Longevidade , Peptídeos beta-Amiloides/metabolismo , Paralisia , Autofagia , Estresse Oxidativo
11.
Biol Trace Elem Res ; 201(12): 5540-5545, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36892689

RESUMO

Hand-foot skin reaction (HFSR) is a common skin-related adverse event induced by multikinase inhibitors targeting both platelet-derived growth factor receptor and vascular endothelial growth factor receptor, possibly due to inadequate repair following frictional trauma. Zinc is a trace element and essential nutrient in humans that plays critical roles in the development and differentiation of skin cells. Zinc transporters (Zrt- and Irt-like proteins and Zn transporters) and metallothioneins are involved in zinc efflux, uptake, and homeostasis and have been reported to be involved in skin differentiation. The underlying mechanism of HFSR remains unclear, and the association between HFSR and zinc has not been previously studied. However, some case reports and case series provide potential evidence to suggest that zinc deficiency may be involved in HFSR development and zinc supplementation may relieve HFSR symptoms. However, no large-scale clinical studies have been conducted to examine this role. Therefore, this review summarizes the evidence supporting a possible link between HFSR development and zinc and proposes potential mechanisms underlying this association based on current evidence.


Assuntos
Desnutrição , Dermatopatias , Zinco , Humanos , Inibidores de Proteínas Quinases/efeitos adversos , Pele/patologia , Fator A de Crescimento do Endotélio Vascular , Zinco/deficiência , Dermatopatias/induzido quimicamente
12.
Front Immunol ; 14: 1128138, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36891317

RESUMO

Antimicrobial peptides are important components of the host innate immune system, forming the first line of defense against infectious microorganisms. Among them, liver-expressed antimicrobial peptides (LEAPs) are a family of antimicrobial peptides that widely exist in vertebrates. LEAPs include two types, named LEAP-1 and LEAP-2, and many teleost fish have two or more LEAP-2s. In this study, LEAP-2C from rainbow trout and grass carp were discovered, both of which are composed of 3 exons and 2 introns. The antibacterial functions of the multiple LEAPs were systematically compared in rainbow trout and grass carp. The gene expression pattern revealed that rainbow trout and grass carp LEAP-1, LEAP-2A, LEAP-2B and/or LEAP-2C were differentially expressed in various tissues/organs, mainly in liver. After bacterial infection, the expression levels of LEAP-1, LEAP-2A, LEAP-2B and/or LEAP-2C in the liver and gut of rainbow trout and grass carp increased to varying degrees. Moreover, the antibacterial assay and bacterial membrane permeability assay showed that rainbow trout and grass carp LEAP-1, LEAP-2A, LEAP-2B and LEAP-2C all have antibacterial activities against a variety of Gram-positive and Gram-negative bacteria with varying levels through membrane rupture. Furthermore, cell transfection assay showed that only rainbow trout LEAP-1, but not LEAP-2, can lead to the internalization of ferroportin, the only iron exporter on cell surface, indicating that only LEAP-1 possess iron metabolism regulation activity in teleost fish. Taken together, this study systematically compared the antibacterial function of LEAPs in teleost fish and the results suggest that multiple LEAPs can enhance the immunity of teleost fish through different expression patterns and different antibacterial activities to various bacteria.


Assuntos
Antibacterianos , Peptídeos Antimicrobianos , Animais , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Fígado/metabolismo , Ferro/metabolismo
13.
Chaos ; 33(1): 011101, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36725633

RESUMO

Critical physical systems with large numbers of molecules can show universal and scaling behaviors. It is of interest to know whether human societies with large numbers of people can show the same behaviors. Here, we use network theory to analyze Chinese history in periods 209 BCE-23 CE and 515-618 CE) related to the Western Han-Xin Dynasty and the late Northern Wei-Sui Dynasty, respectively. Two persons are connected when they appear in the same historical event. We find that the historical networks from two periods separated about 500 years have interesting universal and scaling behaviors, and they are small-world networks; their average cluster coefficients as a function of degree are similar to the network of movie stars. In the historical networks, the persons with larger degrees prefer to connect with persons with a small degree; however, in the network of movie stars, the persons with larger degrees prefer to connect with persons with large degrees. We also find an interesting similar mechanism for the decline or collapse of historical Chinese dynasties. The collapses of the Xin dynasty (9-23 CE) and the Sui dynasty (581-618 CE) were initiated from their arrogant attitude toward neighboring states.

14.
Front Immunol ; 13: 982196, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341387

RESUMO

Cholangiocarcinoma (CCA) is the second most common primary liver malignancy and carries a dismal prognosis due to difficulties in achieving an optimal resection, and poor response to current standard-of-care systemic therapies. We previously devised a CTLA4-PD-L1 DNA cancer vaccine (DNA vaccine) and demonstrated its therapeutic effects on reducing tumor growth in a thioacetamide (TAA)-induced rat intrahepatic CCA (iCCA) model. Here, we developed a CTLA4-PD-L1 chimeric protein vaccine (Protein vaccine), and examined its effects in the rat iCCA model. In a therapeutic setting, iCCA-bearing rats received either DNA plus Protein vaccines or Protein vaccine alone, resulting in increased PD-L1 and CTLA-4 antibody titers, and reduced iCCA tumor burden as verified by animal positron emission tomography (PET) scans. Treating iCCA-bearing rats with Protein vaccine alone led to the increase of CTAL4 antibody titers that correlated with the decrease of tumor SUV ratio, indicating regressed tumor burden, along with increased <i>CD8</i> and granzyme A (<i>GZMA</i>) expression, and decreased PD-L1 expression on tumor cells. In a preventive setting, DNA or Protein vaccines were injected in rats before the induction of iCCA by TAA. Protein vaccines induced a more sustained PD-L1 and CTLA-4 antibody titers compared with DNA vaccines, and was more potent in preventing iCCA tumorigenesis. Correspondingly, Protein vaccines, but not DNA vaccines, downregulated PD-L1 gene expression and hindered the carcinogenesis of iCCA. Taken together, the CTLA4-PD-L1 chimeric protein vaccine may function both as a therapeutic cancer vaccine and as a preventive cancer vaccine in the TAA-induced iCCA rat model.


Assuntos
Neoplasias dos Ductos Biliares , Vacinas Anticâncer , Colangiocarcinoma , Animais , Ratos , Antígeno CTLA-4/genética , Antígeno B7-H1 , Proteínas de Checkpoint Imunológico , Colangiocarcinoma/genética , Colangiocarcinoma/prevenção & controle , Colangiocarcinoma/metabolismo , Carcinogênese/patologia , Transformação Celular Neoplásica/patologia , Tioacetamida , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/prevenção & controle , Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares Intra-Hepáticos/metabolismo , Proteínas Recombinantes de Fusão
15.
Am J Cancer Res ; 12(9): 4399-4410, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225643

RESUMO

Intrahepatic cholangiocarcinoma (iCCA) is an adenocarcinoma arising from the intrahepatic bile duct and accounts for the second highest incidence of primary liver cancers after hepatocellular carcinoma. The lack of effective treatment leads to a poor prognosis for advanced iCCA, so new targeted therapy is needed. The impairment of wild-type (WT) p53 tumor suppressor function by its negative regulators frequently occurs in iCCA. Therefore, restoration of WT p53 function by inhibiting its negative regulators is a therapeutic strategy being explored for cancer treatment. Combining an MDM2 inhibitor (MDM2i, RG7388) to stabilize p53 and a WIP1 inhibitor (WIP1i, GSK2830371) to increase p53 phosphorylation enhances p53 function. The combination of MDM2 and WIP1 inhibitors has been reported in several cancer types but in vivo studies are lacking. In the current study, liver adenocarcinoma cell lines, RBE and SK-Hep-1, were treated with RG7388 alone and in combination with GSK2830371. Cell proliferation, clonogenicity, protein and mRNA expressions, and cell cycle distribution were performed to investigate the effect and mechanism of growth suppression. To evaluate the antitumor efficacy of RG7388 and GSK2830371 in vivo, SK-Hep-1 xenografts in NOD-SCID mice were treated with combination therapy for two weeks. The combination of MDM2i and WIP1i significantly increased the growth inhibition, cytotoxicty, p53 protein expression, and phosphorylation (Ser15), leading to transactivation of downstream targets (p21WAF1 and MDM2). The in vivo results demonstrated that the combination treatment can significantly inhibit tumor growth. In this study, the liver adenocarcinoma cell lines responded to combination treatment via reactivation of p53 function evidenced by increased p53 expression, phosphorylation and expression of its downstream targets. This efficacy was also demonstrated in vivo. The current research provides a novel strategy for targeting the p53 pathway in liver adenocarcinoma that warrants further investigation.

16.
Clin Immunol ; 244: 109093, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35944881

RESUMO

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Emerging evidence indicates that the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome is activated, which results in a cytokine storm at the late stage of COVID-19. Autophagy regulation is involved in the infection and replication of SARS-CoV-2 at the early stage and the inhibition of NLRP3 inflammasome-mediated lung inflammation at the late stage of COVID-19. Here, we discuss the autophagy regulation at different stages of COVID-19. Specifically, we highlight the therapeutic potential of autophagy activators in COVID-19 by inhibiting the NLRP3 inflammasome, thereby avoiding the cytokine storm. We hope this review provides enlightenment for the use of autophagy activators targeting the inhibition of the NLRP3 inflammasome, specifically the combinational therapy of autophagy modulators with the inhibitors of the NLRP3 inflammasome, antiviral drugs, or anti-inflammatory drugs in the fight against COVID-19.


Assuntos
COVID-19 , Pneumonia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antivirais/farmacologia , Autofagia , Síndrome da Liberação de Citocina , Humanos , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , SARS-CoV-2
17.
Front Oncol ; 12: 872202, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35965531

RESUMO

KIT and PDGFRA play a major role in the oncogenic process in gastrointestinal stroma tumors (GIST) and small molecules have been employed with great success to target the KIT and PDGFRA pathways in this cancer. However, approximately 10% of patients with GIST are resistant to current targeted drug therapy. There is a need to explore other potential targets. Although p53 alterations frequently occur in most cancers, studies regarding p53 in GIST have been limited. The CDKN2A/MDM2/p53 axis regulates cell cycle progression and DNA damage responses, which in turn control tumor growth. This axis is the major event required for transformation from low- to high-risk GIST. Generally, p53 mutation is infrequent in GIST, but p53 overexpression has been reported to be associated with high-risk GIST and unfavorable prognosis, implying that p53 should play a critical role in GIST. Also, Wee1 regulates the cell cycle and the antitumor activity of Wee1 inhibition was reported to be p53 mutant dependent. In addition, Wee1 was reported to have potential activity in GIST through the regulation of KIT protein and this mechanism may be dependent on p53 status. In this article, we review previous reports regarding the role of p53 in GIST and propose targeting the p53 pathway as a novel additional treatment strategy for GIST.

18.
Oxid Med Cell Longev ; 2022: 1015791, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35419162

RESUMO

Traumatic brain injury (TBI), known as mechanical damage to the brain, impairs the normal function of the brain seriously. Its clinical symptoms manifest as behavioral impairment, cognitive decline, communication difficulties, etc. The pathophysiological mechanisms of TBI are complex and involve inflammatory response, oxidative stress, mitochondrial dysfunction, blood-brain barrier (BBB) disruption, and so on. Among them, oxidative stress, one of the important mechanisms, occurs at the beginning and accompanies the whole process of TBI. Most importantly, excessive oxidative stress causes BBB disruption and brings injury to lipids, proteins, and DNA, leading to the generation of lipid peroxidation, damage of nuclear and mitochondrial DNA, neuronal apoptosis, and neuroinflammatory response. Transcription factor NF-E2 related factor 2 (Nrf2), a basic leucine zipper protein, plays an important role in the regulation of antioxidant proteins, such as oxygenase-1(HO-1), NAD(P)H Quinone Dehydrogenase 1 (NQO1), and glutathione peroxidase (GPx), to protect against oxidative stress, neuroinflammation, and neuronal apoptosis. Recently, emerging evidence indicated the knockout (KO) of Nrf2 aggravates the pathology of TBI, while the treatment of Nrf2 activators inhibits neuronal apoptosis and neuroinflammatory responses via reducing oxidative damage. Phytochemicals from fruits, vegetables, grains, and other medical herbs have been demonstrated to activate the Nrf2 signaling pathway and exert neuroprotective effects in TBI. In this review, we emphasized the contributive role of oxidative stress in the pathology of TBI and the protective mechanism of the Nrf2-mediated oxidative stress response for the treatment of TBI. In addition, we summarized the research advances of phytochemicals, including polyphenols, terpenoids, natural pigments, and otherwise, in the activation of Nrf2 signaling and their potential therapies for TBI. Although there is still limited clinical application evidence for these natural Nrf2 activators, we believe that the combinational use of phytochemicals such as Nrf2 activators with gene and stem cell therapy will be a promising therapeutic strategy for TBI in the future.


Assuntos
Lesões Encefálicas Traumáticas , Fator 2 Relacionado a NF-E2 , Antioxidantes/farmacologia , Lesões Encefálicas Traumáticas/metabolismo , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Compostos Fitoquímicos/metabolismo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico
19.
Cancers (Basel) ; 13(19)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34638508

RESUMO

Phenotypic heterogeneity and molecular diversity make diffuse large B-cell lymphoma (DLBCL) a challenging disease. We recently illustrated that amoeboid movement plays an indispensable role in DLBCL dissemination and inadvertently identified that the inhibitor of bromodomain and extra-terminal (BET) proteins JQ1 could repress DLBCL migration. To explore further, we dissected the impacts of BET inhibition in DLBCL. We found that JQ1 abrogated amoeboid movement of DLBCL cells through both restraining RAS signaling and suppressing MYC-mediated RhoA activity. We also demonstrated that BET inhibition resulted in the upregulation of a GTPase regulatory protein, the IQ motif containing GTPase activating protein 3 (IQGAP3). IQGAP3 similarly exhibited an inhibitory effect on RAS activity in DLBCL cells. Through barcoded mRNA/protein profiling in clinical samples, we identified a specific subgroup of DLBCL tumors with enhanced phosphatidylinositol-3-kinase (PI3K) activity, which led to an inferior survival in these patients. Strikingly, a lower IQGAP3 expression level further portended those with PI3K-activated DLBCL a very dismal outcome. The inhibition of BET and PI3K signaling activity led to effective suppression of DLBCL dissemination in vivo. Our study provides an important insight into the ongoing efforts of targeting BET proteins as a therapeutic approach for DLBCL.

20.
Biomedicines ; 9(8)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34440089

RESUMO

Cholangiocarcinoma is the most common primary malignant tumor of the bile duct. The current standard first-line treatment for advanced or metastatic cholangiocarcinoma is gemcitabine and cisplatin. However, few effective treatment choices exist for refractory cholangiocarcinoma, and additional therapeutic drugs are urgently required. Our previous work demonstrated that the ALDH isoform 1A3 plays a vital role in the malignant behavior of cholangiocarcinoma and may serve as a new therapeutic target. In this study, we found a positive correlation between ALDH1A3 protein expression levels and the cell migration abilities of three cholangiocarcinoma cell lines, which was verified using ALDH1A3-overexpressing and ALDH1A3-knockdown clones. We also used ALDH1A3-high and ALDH1A3-low populations of cholangiocarcinoma cell lines from the library of integrated network-based cellular signatures (LINCS) program and assessed the effects of ruxolitinib, a commercially available JAK2 inhibitor. Ruxolitinib had a higher cytotoxic effect when combined with gemcitabine. Furthermore, the nuclear translocation STAT1 and STAT3 heterodimers were markedly diminished by ruxolitinib treatment, possibly resulting in decreased ALDH1A3 activation. Notably, ruxolitinib alone or combined with gemcitabine led to significantly reduced tumor size and weight. Collectively, our studies suggest that ruxolitinib might suppress the ALDH1A3 activation through the JAK2/STAT1/3 pathway in cholangiocarcinoma, and trials should be undertaken to evaluate its efficacy in clinical therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...